Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

نویسندگان

  • C. H. Nelson
  • J. Gutiérrez Pastor
  • C. Goldfinger
چکیده

We summarize the importance of great earthquakes (Mw & 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, Xray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ∼ 550 yr in northern Cascadia Basin and ∼ 200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (∼ 100 km) than on passive margins (∼ 1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbiditesystem deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismoturbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw= or < 8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia Published by Copernicus Publications on behalf of the European Geosciences Union. 3192 C. H. Nelson et al.: Hazards, stratigraphic and lithologic effects of great earthquakes on western USA margin and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay of Mass-transport and Turbidite-system Deposits in Different Active Tectonic and Passive Continental Margin Settings: External and Local Controlling Factors

The volume and interplay of mass-transport (MTD) and turbidite-system deposits varies on different continental margins depending on local and external controls such as active-margin or passive-margin tectonic setting and climatic and/or sea-level change. Erosion and breaching of local grabens at the shelf edge of the southern Bering Sea produce giant, gullied canyons and MTD sheets that dominat...

متن کامل

Possible Basement Transverse Faults in the Western Alborz, Northern Iran

Transverse basement (TB) faults are important structures in the mountain belts or sedimentary basins influencing various aspects of them. The origin of these faults is diverse, but their effect on the shape and configuration of continental margins is characteristics. The Western Alborz range that borders the South Caspian basin to southwest is a complex range with principal faults and known ear...

متن کامل

External Controls on Modern Clastic Turbidite Systems: Three Case Studies External Controls on Modern Clastic Turbidite Systems: Three Case Studies

Three case studies are used to exemplify the wide variety of controlling factors that combine to influence the development of modern turbidite systems, and how these vary with location and time. For example, Cascadia Basin in the Pacific Ocean off western North America, which is underlain by the Cascadia Subduction Zone, exhibits the dominant tectonic control of earthquake triggering for turbid...

متن کامل

Tectonic geomorphology and the record of Quaternary plate boundary deformation in the Olympic Mountains

We use Quaternary stratigraphy to reconstruct landscape evolution and measure tectonic deformation of the Olympic Mountains section of the Pacifi c Northwest Coast Range. An important motivation for understanding orogenesis here, and throughout the Coast Range, is the concern about the relationship of active deformation to seismic hazards associated with the Cascadia subduction zone. There is a...

متن کامل

Petrochemical Characteristics of Neogene and Quaternary Alkali Olivine Basalts from the Western Margin of the Lut Block, Eastern Iran

The Nayband strike-slip fault forms the western margin of the micro-continental Lut block in Eastern Iran. Neogene and Quaternary mafic volcanic rocks collected near Tabas, along the northern part of the fault (NNF; 15 Ma), and further to the south, along the middle part of the fault (MNF; 2 Ma), are within-plate sodic-series alkali olivine basalts with high TiO2 and up to >16% normative nephel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012